విస్తీర్ణం: కూర్పుల మధ్య తేడాలు

దిద్దుబాటు సారాంశం లేదు
దిద్దుబాటు సారాంశం లేదు
పంక్తి 1:
{{అనువాదం}}
{{in use}}
[[File:Area.svg|right|thumb|alt=Three shapes on a square grid|The combined area of these three [[shapes]] is [[approximately#Mathematics|approximately]] 15.56 [[square (geometry)|squares]].]]
'''వైశాల్యం''' అనగా సమతలంలో ఒక ద్విమితీయ ఆకారం ఆక్రమించే స్థల పరిమాణం. దీన్ని అర్థం చేసుకొనుటకు ఒక నిర్ణీత మందముగల ఆకారమునకు మొదటి కోట్ గా దాని ఉపరితలమునకు సరిపడే రంగువేయుటలో ఆక్రమించు స్థల పరిమాణం.<ref name=MathWorld>{{cite web|url=http://mathworld.wolfram.com/Area.html|title=Area|publisher=[[Wolfram MathWorld]]|author=[[Eric W. Weisstein]]|accessdate=3 July 2012}}</ref> ఇది ఒక వక్రతలమునకు యొక్క (ఏక మితీయ భావన) లేదా ఒక ఘన పదార్థం యొక్క ఘనపరిమాణము (త్రి మితీయ భావన) లకు వాటి పొడవులో గల ద్విమితీయ భావన.
'''Area''' is a [[quantity]] that expresses the extent of a [[two-dimensional]] [[surface]] or [[shape]], or [[planar lamina]], in the [[Plane (geometry)|plane]]. Area can be understood as the amount of material with a given thickness that would be necessary to fashion a model of the shape, or the amount of [[paint]] necessary to cover the surface with a single coat.<ref name=MathWorld>{{cite web|url=http://mathworld.wolfram.com/Area.html|title=Area|publisher=[[Wolfram MathWorld]]|author=[[Eric W. Weisstein]]|accessdate=3 July 2012}}</ref> It is the two-dimensional [[analogy|analog]] of the [[length]] of a [[plane curve|curve]] (a one-dimensional concept) or the [[volume]] of a [[solid geometry|solid]] (a three-dimensional concept).
 
ఒక ఆకారము యొక్క వైశాల్యము ను నిర్ణీత పరిమాణము గల చదరాలతో పోల్చి చెబుతారు<ref name=AF/>. అంతర్జాతీయ ప్రమాణాలు వ్యవస్థ(SI) పద్దతిలో వైశాల్యమునకు ప్రమాణాలు "చదరపు మీటర్లు" లేదా "స్క్వేర్ మీటర్లు"(దీనిని m<sup>2</sup> గా వ్రాస్తాము). చదరపు మీటరు అనగా ఒక [[మీటరు]] [[భుజం]] గల చదరపు వైశాల్యము<ref name=B>[[Bureau International des Poids et Mesures]] [http://www.bipm.org/en/CGPM/db/11/12/ Resolution 12 of the 11th meeting of the CGPM (1960)], retrieved 15 July 2012</ref>. ఒక ఆకారం యొక్క వైశాల్యము మూడు చదరపు మీటర్లు అనగా మూడు ఒక మీటరు భుజము గల చదరాల వైశాల్యములకు సమానం. గణిత శాస్త్రములో ప్రమాణ చదరము అనగా ఏదైనా ఒక ఆకారం యొక్క వైశాల్యం, మరియు వాస్తవ సంఖ్యలతో కొలతలేని తలము లేదా ఆకారం యొక్క వైశాల్యము.
The area of a shape can be measured by comparing the shape to [[square (geometry)|squares]] of a fixed size.<ref name=AF/> In the [[International System of Units]] (SI), the standard unit of area is the [[square metre]] (written as m<sup>2</sup>), which is the area of a square whose sides are one [[metre]] long.<ref name=B>[[Bureau International des Poids et Mesures]] [http://www.bipm.org/en/CGPM/db/11/12/ Resolution 12 of the 11th meeting of the CGPM (1960)], retrieved 15 July 2012</ref> A shape with an area of three square metres would have the same area as three such squares. In [[mathematics]], the [[unit square]] is defined to have area one, and the area of any other shape or surface is a [[Dimensionless quantity|dimensionless]] [[real number]].
 
Thereకొన్ని areసాధరణ several well-knownఆకారాలైన [[formulaత్రిభుజం|త్రిభుజాల]]s for the areas of simple shapes such as, [[triangleదీర్ఘచతురస్రం|దీర్ఘచతురస్రాల]]s, [[rectangle]]s, andమరియు [[circleవృత్తం|వృత్తాల]]s. యొక్క Usingవైశాల్యములకు theseసంబంధించిన formulas,సూత్రములు theఅందరికీ areaసుపరిచితమే. of anyసూత్రములనుపయోగించి ఒక [[polygonబహుభుజి]] canయొక్క beవైశాల్యమును foundవివిధ byత్రిభుజాలుగా [[Polygonవిడగొట్టి triangulation|dividingవాటి theమొత్తము polygonవైశాల్యమును intoగణించి triangles]].కనుగొనవచ్చును<ref name=bkos>{{Cite book |author1=Mark de Berg |author2=Marc van Kreveld |author3=Mark Overmars |author3-link=Mark Overmars |author4=Otfried Schwarzkopf |year=2000 |title=Computational Geometry |publisher=[[Springer-Verlag]] |edition=2nd revised |isbn=3-540-65620-0 |chapter=Chapter 3: Polygon Triangulation |pages=45–61 |postscript=<!-- Bot inserted parameter. Either remove it; or change its value to "." for the cite to end in a ".", as necessary. -->{{inconsistent citations}}}}</ref> For shapes with curved boundary, [[calculus]] is usually required to compute the area. Indeed, the problem of determining the area of plane figures was a major motivation for the [[History of calculus|historical development of calculus]].<ref>{{cite book|first=Carl B. |last=Boyer |authorlink=Carl Benjamin Boyer |title=A History of the Calculus and Its Conceptual Development |publisher=Dover |year=1959 |isbn=0-486-60509-4}}</ref>
 
 
 
For shapes with curved boundary, [[calculus]] is usually required to compute the area. Indeed, the problem of determining the area of plane figures was a major motivation for the [[History of calculus|historical development of calculus]].<ref>{{cite book|first=Carl B. |last=Boyer |authorlink=Carl Benjamin Boyer |title=A History of the Calculus and Its Conceptual Development |publisher=Dover |year=1959 |isbn=0-486-60509-4}}</ref>
 
For a solid shape such as a [[sphere]], [[Cone (geometry)|cone]], or [[cylinder (geometry)|cylinder]], the area of its boundary surface is called the [[surface area]].<ref name=MathWorld/><ref name=MathWorldSurfaceArea>{{cite web|url=http://mathworld.wolfram.com/SurfaceArea.html|title=Surface Area|publisher=[[Wolfram MathWorld]]|author=[[Eric W. Weisstein]]|accessdate=3 July 2012}}</ref> Formulas for the surface areas of simple shapes were computed by the [[Greek mathematics|ancient Greeks]], but computing the surface area of a more complicated shape usually requires [[multivariable calculus]].
"https://te.wikipedia.org/wiki/విస్తీర్ణం" నుండి వెలికితీశారు