అంచు (జ్యామితి)

ఒక బహుభుజి యొక్క రెండు ఆసన్న శీర్శాలను కలిపే రేఖాఖండం
Complete graph K2.svg
రెండు శీర్షాల మధ్య గల అంచు
Square (geometry).svg
అంచులతో ఆవరింపబడిన బహుభుజి, ఇది నాలుగు అంచులతోకూడిన చతురస్రం
Hexahedron.png
ప్రతి భుజం కూడా రెండు తలాతతో కూడిన "పాలిహైడ్రన్", ఇది ఒక సమఘనం .
Hypercube.svg
ప్రతి అంచు నాలుగు లేదా ఎక్కువ తలాలతో కూడిన 4-పాలిటోప్, ఇది "టెసెరాక్ట్" యొక్క ప్రొజక్షన్ లా కనిపిస్తుంది.

అంచు అనునది జ్యామితిలో ఒక బహుభుజి, పాలిహైడ్రన్ లేదా బహు పరిమాణ పాలిటోప్ లలో రెండు ఆసన్న శీర్షాలను కలిపే రేఖాఖండం[1]

రేఖాచిత్రాలలో అంచుల సంబంధంసవరించు

రేఖాచిత్రాల సిద్ధాంతం (గ్రాఫ్ సిద్ధాంతం) లో అంచు అనేది ఒక అమూర్తమైన వస్తువు. అది గ్రాఫ్ పై రెండు శీర్షములను కలిపేది. విజాతీయ బహుభుజులు, పాలిహైడ్రన్ లలో అంచులు అనునవి ఒక మూర్త భావన కలిగిన జ్యామితీయ పరంగా రేఖాఖండాలు.

అయినప్పటికీ ఏదైనా ఒక పాలీహైడ్రన్ ను దాని అంచులతో కూడిన అస్థిపంజర రూపంలో చూపవచ్చు. ఒక పాలీహైడ్రన్ యొక్క జ్యామితీయ అంచులు కలిగిన పటం దానికి సరూపంగా ఉన్న జ్యామితీయ శీర్షములు కలిగిన ఒక గ్రాఫ్ ఒకేలా ఉంటాయి[2] . అదే విధంగా ఒక త్రిపరిమాణం కలిగిన పాలిహైడ్రల్ గ్రాఫ్ కూడా మూడు శీర్షములు కలిగిన ప్లానర్ గ్రాఫ్ కు సరూపంగా ఉంటుంది[3]

ఇతర తలాలతో సంఘటనలుసవరించు

ఒక బహుభుజిలో రెండు అంచులు ప్రతీ శీర్షం వద్ద కలుస్తాయి; సర్వసాధారణంగా బలింక్షీ సిద్ధాంతం ప్రకారం d-పరిమాణ కుంభాకార పాలిటోప్ యొక్క కనీసం d అంచులు ప్రతి శీర్షం వద్ద కలుస్తాయి[4]. అదే విధంగా పాలిహైడ్రన్ లో కచ్చితంగా రెండు ద్విపరిమాణ తలాలు ప్రతి అంచు వద్ద కలుస్తాయి[5] . అదే విధంగా ఉన్నత పరిమాణ పాలీటోప్‌ లలో మూడు లేదా అంతకంటే ఎక్కువ తలాలు ప్రతి అంచు వద్ద కలుస్తాయి.

మూలాలుసవరించు

  1. Ziegler, Günter M. (1995), Lectures on Polytopes, Graduate Texts in Mathematics, 152, Springer, Definition 2.1, p. 51 CS1 maint: discouraged parameter (link).
  2. Senechal, Marjorie (2013), Shaping Space: Exploring Polyhedra in Nature, Art, and the Geometrical Imagination, Springer, p. 81, ISBN 9780387927145 CS1 maint: discouraged parameter (link).
  3. Pisanski, Tomaž; Randić, Milan (2000), "Bridges between geometry and graph theory", in Gorini, Catherine A. (ed.), Geometry at work, MAA Notes, 53, Washington, DC: Math. Assoc. America, pp. 174–194, MR 1782654. See in particular Theorem 3, p. 176.
  4. Balinski, M. L. (1961), "On the graph structure of convex polyhedra in n-space", Pacific Journal of Mathematics, 11 (2): 431–434, MR 0126765 CS1 maint: discouraged parameter (link).
  5. Wenninger, Magnus J. (1974), Polyhedron Models, Cambridge University Press, p. 1, ISBN 9780521098595.