α A β B {\displaystyle \alpha \mathrm {A} \beta \mathrm {B} }
( α + β ) 2 {\displaystyle (\alpha +\beta )^{2}}
1 2 {\displaystyle {\frac {1}{2}}}
∞ π {\displaystyle \infty \pi }
∞ ϕ ∫ i = 0 π 2 α ± β {\displaystyle \infty \phi \int _{i=0}^{\frac {\pi }{2}}\alpha \pm \beta }
( α + b e t a ) 2 {\displaystyle {\sqrt {(\alpha +beta)^{2}}}} ∑ i i = o n {\displaystyle \sum _{i}{i=o}^{n}}
∂ 2 y {\displaystyle \partial ^{2}y}