వాడుకరి:Roja Pichhika/ప్రయోగశాల
The general form of wavefunction for a system of particles, each with position ri and z-component of spin sz i. Sums are over the discrete variable sz, integrals over continuous positions r.
For clarity and brevity, the coordinates are collected into tuples, the indices label the particles (which cannot be done physically, but is mathematically necessary). Following are general mathematical results, used in calculations.
Property or effect | Nomenclature | Equation |
---|---|---|
Wavefunction for N particles in 3d |
|
In function notation:
in bra–ket notation: for non-interacting particles:
|
Position-momentum Fourier transform (1 particle in 3d) |
|
|
General probability distribution |
|
|
General normalization condition |
Equations
మార్చుWave–particle duality and time evolution
మార్చుProperty or effect | Nomenclature | Equation |
---|---|---|
Planck–Einstein equation and de Broglie wavelength relations |
|
|
Schrödinger equation |
|
General time-dependent case:
Time-independent case: |
Heisenberg equation |
|
|
Time evolution in Heisenberg picture (Ehrenfest theorem) |
of a particle. |
For momentum and position;
|
Non-relativistic time-independent Schrödinger equation
మార్చుSummarized below are the various forms the Hamiltonian takes, with the corresponding Schrödinger equations and forms of wavefunction solutions. Notice in the case of one spatial dimension, for one particle, the partial derivative reduces to an ordinary derivative.
One particle | N particles | |
One dimension |
where the position of particle n is xn. | |
There is a further restriction — the solution must not grow at infinity, so that it has either a finite L2-norm (if it is a bound state) or a slowly diverging norm (if it is part of a continuum):[1] |
for non-interacting particles
| |
Three dimensions |
where the position of the particle is r = (x, y, z). |
where the position of particle n is r n = (xn, yn, zn), and the Laplacian for particle n using the corresponding position coordinates is
|
for non-interacting particles
|
Non-relativistic time-dependent Schrödinger equation
మార్చుAgain, summarized below are the various forms the Hamiltonian takes, with the corresponding Schrödinger equations and forms of solutions.
One particle | N particles | |
One dimension |
where the position of particle n is xn. | |
Three dimensions | ||
This last equation is in a very high dimension,[2] so the solutions are not easy to visualize. | ||
Photoemmission
మార్చుProperty/Effect | Nomenclature | Equation |
---|---|---|
Photoelectric equation |
|
|
Threshold frequency and |
|
Can only be found by experiment.
The De Broglie relations give the relation between them:
|
Photon momentum |
|
The De Broglie relations give:
|
Quantum uncertainty
మార్చుProperty or effect | Nomenclature | Equation |
---|---|---|
Heisenberg's uncertainty principles |
|
Position-momentum
Energy-time Number-phase |
Dispersion of observable |
|
|
General uncertainty relation |
|
Property or effect | Nomenclature | Equation |
---|---|---|
Density of states | ||
Fermi–Dirac distribution (fermions) |
|
|
Bose–Einstein distribution (bosons) |
Angular momentum
మార్చుProperty or effect | Nomenclature | Equation |
---|---|---|
Angular momentum quantum numbers |
|
Spin projection:
Orbital:
Total: |
Angular momentum magnitudes | angular momementa:
|
Spin magnitude:
Orbital magnitude: Total magnitude:
|
Angular momentum components | Spin:
Orbital: |
- Magnetic moments
In what follows, B is an applied external magnetic field and the quantum numbers above are used.
Property or effect | Nomenclature | Equation |
---|---|---|
orbital magnetic dipole moment |
|
z-component: |
spin magnetic dipole moment |
|
z-component: |
dipole moment potential |
|
The Hydrogen atom
మార్చుProperty or effect | Nomenclature | Equation |
---|---|---|
Energy levels |
|
|
Spectrum | λ = wavelength of emitted photon, during electronic transition from Ei to Ej |
See also
మార్చుFootnotes
మార్చు- ↑ Feynman, R.P.; Leighton, R.B.; Sand, M. (1964). "Operators". The Feynman Lectures on Physics. Vol. 3. Addison-Wesley. pp. 20–7. ISBN 0-201-02115-3.
- ↑ Shankar, R. (1994). Principles of Quantum Mechanics. Kluwer Academic/Plenum Publishers. p. 141. ISBN 978-0-306-44790-7.
Sources
మార్చు- P.M. Whelan, M.J. Hodgeson (1978). Essential Principles of Physics (2nd ed.). John Murray. ISBN 0-7195-3382-1.
- G. Woan (2010). The Cambridge Handbook of Physics Formulas. Cambridge University Press. ISBN 978-0-521-57507-2.
- A. Halpern (1988). 3000 Solved Problems in Physics, Schaum Series. Mc Graw Hill. ISBN 978-0-07-025734-4.
- R. G. Lerner, G. L. Trigg (2005). Encyclopaedia of Physics (2nd ed.). VHC Publishers, Hans Warlimont, Springer. pp. 12–13. ISBN 978-0-07-025734-4.
- C. B. Parker (1994). McGraw Hill Encyclopaedia of Physics (2nd ed.). McGraw Hill. ISBN 0-07-051400-3.
- P. A. Tipler, G. Mosca (2008). Physics for Scientists and Engineers: With Modern Physics (6th ed.). W. H. Freeman and Co. ISBN 978-1-4292-0265-7.
- L.N. Hand, J. D. Finch (2008). Analytical Mechanics. Cambridge University Press,. ISBN 978-0-521-57572-0.
{{cite book}}
: CS1 maint: extra punctuation (link) - T. B. Arkill, C. J. Millar (1974). Mechanics, Vibrations and Waves. John Murray,. ISBN 0-7195-2882-8.
{{cite book}}
: CS1 maint: extra punctuation (link) - H.J. Pain (1983). The Physics of Vibrations and Waves (3rd ed.). John Wiley & Sons,. ISBN 0-471-90182-2.
{{cite book}}
: CS1 maint: extra punctuation (link) - J. R. Forshaw, A. G. Smith (2009). Dynamics and Relativity. Wiley,. ISBN 978-0-470-01460-8.
{{cite book}}
: CS1 maint: extra punctuation (link) - G. A. G. Bennet (1974). Electricity and Modern Physics (2nd ed.). Edward Arnold (UK). ISBN 0-7131-2459-8.
- I. S. Grant, W. R. Phillips, Manchester Physics (2008). Electromagnetism (2nd Edition). John Wiley & Sons. ISBN 978-0-471-92712-9.
{{cite book}}
: CS1 maint: multiple names: authors list (link) - D.J. Griffiths (2007). Introduction to Electrodynamics (3rd ed.). Pearson Education, Dorling Kindersley,. ISBN 81-7758-293-3.
{{cite book}}
: CS1 maint: extra punctuation (link)
Further reading
మార్చు- L. H. Greenberg (1978). Physics with Modern Applications. Holt-Saunders International W. B. Saunders and Co. ISBN 0-7216-4247-0.
- J. B. Marion, W. F. Hornyak (1984). Principles of Physics. Holt-Saunders International Saunders College. ISBN 4-8337-0195-2.
- A. Beiser (1987). Concepts of Modern Physics (4th ed.). McGraw-Hill (International). ISBN 0-07-100144-1.
- H. D. Young, R. A. Freedman (2008). University Physics – With Modern Physics (12th ed.). Addison-Wesley (Pearson International). ISBN 0-321-50130-6.