గణిత శాస్త్రంలో అనే సంఖ్య అనే సంఖ్యను నిశ్శేషంగా భాగించిన యెడల ను యొక్క కారణాంకము లేదా భాజకము అంటారు. ఉదాహరణకు, 18 అనే సంఖ్య 1,2,3,6,9,18 అనే సంఖ్యలచే నిశ్శేషంగా భాగించబడుతుంది. కావున 1,2,3,6,9,18 లు 18 కి కారణాంకాలవుతాయి. m, n అనే పూర్ణ సంఖ్యల లబ్ధం k అయితే m, n లు k కు కారణాంకాలు అవుతాయి.

నిర్వచనంసవరించు

 ,  లు రెండు శూన్యం కాని పూర్ణ సంఖ్యలైన,  ను   భాగిస్తున్నట్లయితే   ఆనునది  కు కారణాంకమవుతుంది. దీనిని క్రింది విధంగా రాయవచ్చు.

 

  అనే పూర్ణ సంఖ్య వ్యవస్థితమైతే   అవుతుంది.[1]

సాధారణంగాసవరించు

విభాజకాలు (కారణాంకాలు) ధనాత్మకమే కాకుండా ఋణాత్మకంగా కూడా ఉంటాయి. కొన్ని సందర్భాలలో ఈ నిర్వచనం ధనాత్మక కారణాకాలకే పరిమితమవుతుంది. ఉదాహరణకు 4 కు ఆరు విభాజకాలు 1, 2, 4, −1, −2,, −4 ఉంటాయి. కానీ ధనాత్మక కారణాంకాలు (1, 2,, 4) మాత్రమే ఉపయోగిస్తుంటారు.

1, -1 లు ప్రతీ పూర్ణసంఖ్యను భాగిస్తాయి. ప్రతీ పూర్ణసంఖ్య (దాని ఋణాత్మకంకూడా) దానికదే కారణాంకం అవుతుంది. 2 చే భాగింపబడిన కారణాంకాలను సరి, 2 చే భాగించబడని కారణాంకాలను బేసి అంటారు.

1, −1, n, −nలు nకు ట్రివియల్ డివైజర్స్ అవుతాయి. ఏ కారణాంకమైనా ట్రివియల్ కారణాంకం కాకపోతే అది నాన్-ట్రివియల్ కాఅరణాంకం అవుతుంది.[2]

ధర్మములుసవరించు

  • గుణకము X గుణ్యము = లబ్ధము, లో వచ్చిన లబ్ధమునకు గుణకం, గుణ్యములు కారణాంకములవుతాయి.
  • రెండు కంటే ఎక్కువ సంఖ్యలను గుణకారం చేసినపుడు యెర్పడిన లబ్ధమునకు ఈ సంఖ్యలు కారణాంకములవుతాయి.
  • ఒక సంఖ్య యొక్క ప్రతి కారణాంకము ఆ సంఖ్యను నిశ్శేషంగా భాగింపబడుతుంది.
  • ఒక సంఖ్య యొక్క ప్రతి కారణాంకము ఆ సంఖ్య కంటే తక్కువ గాని లేదా సమానం గాని ఉంటుంది.
  • ఒక సంఖ్య యొక్క కారణాంకములు పరిమితంగా ఉంటాయి.

మూలాలుసవరించు

ఇవి కూడా చూడండిసవరించు

కనిష్ఠ సామాన్య గుణిజం

గరిష్ఠ సామాన్య భాజకం

"https://te.wikipedia.org/w/index.php?title=కారణాంకము&oldid=2961716" నుండి వెలికితీశారు