స్థూపం అనగా గణితంలో వచ్చే స్తంబం వంటి ఆకారం. ఇది త్రిమితీయ ఘనాకారం. ఇది పైన, క్రింది భాగాలు వృత్తాకార తలాలు గల డబ్బా వంటి నిర్మాణం[1]. ఒక చతురస్రం భుజాన్ని, దీర్ఘచతురస్ర పొడవు లేదా వెడల్పులను అక్షంగా తీసుకొని వృత్తాకారంగా చుట్టడం వల్ల స్థూపాకారం తయారుచేయవచ్చు. ఈ స్థూపాలను స్తంబాలని కూడా వ్యవహరిస్తారు. మనం రేఖాఖండాలు గీయడానికి ఉపయోగించే రూళ్ల కర్ర కూడా స్థూపాకారంగానే ఉంటుంది. నిత్య జీవితంలో స్తంబాలు అనేక రకాల త్రిమితీయ ఆకారాలలో ఉన్నప్పటికీ గణిత శాస్త్రంలో మాత్రం పై నుండి క్రింది వరకు ఒకే చుట్టుకొలత గల సమవృత్తాకార స్థూపంగానే పరిగణించాలి[2].

స్థూపాకారంగా ఉన్న ఖాళీ డబ్బా

ఘనపరిమాణంసవరించు

ఒక వృత్తాకార భూమి గల స్థూపం భూవ్యాసార్థం r, స్థూపం ఎత్తు h అయిన దాని ఘనపరిమాణం:

V = πr2h.

ఈ సూత్రం లంబంగా ఉండే స్థూపాలకు వర్తిస్తుంది. [3]

ఈ సూత్రాన్ని కావలెరి సూత్రం ద్వారా కూడా ఉత్పాదించవచ్చు.

సాధారణంగా అదే నియమం ప్రకారం ఒక స్థూపం ఘనపరిమాణం దాని భూవైశాల్యం, ఎత్తుల లబ్దానికి సమానంగా ఉంటుంది. ఉదాహరణకు దీర్ఘ స్థూపం లోని భూమి దీర్ఘ వృత్తాకారంలో ఉన్నందున దాని యొక్క దీర్ఘాక్షం a, హ్రస్వాక్షం b, దాని ఎత్తు h అయిన దాని ఘనపరిమాణం V = Ah అవుతుంది. దానిలో A అనేది దీర్ఘ వృత్తాకార భూమి వైశాల్యం (= πab). సమ దీర్ఘ వృత్తాకార స్థూపం యొక్క ఈ ఫలితాన్ని సమాకలనం ద్వారా కూడా పొందవచ్చు. అందులో స్థూపం యొక్క అక్షాన్ని ధనాత్మక x-అక్షంగానూ, A(x) = A ను ప్రతీ దీర్ఘవృత్తాకార మధ్యచ్ఛేద వైశాల్యంగా తీసుకుంటారు. అపుడు:

A solid elliptic cylinder with the semi-axes a and b for the base ellipse and height h

స్థూపాకార అక్షాలను ఉపయోగిస్తే సమ వృత్తాకార స్థూపం యొక్క ఘనపరిమాణాన్ని సమాకలనం ద్వారా గణించవచ్చు.

ఉపరితల వైశాల్యంసవరించు

ఒక సమ వృత్తాకార స్థూపంలో భూవ్యాసార్థం r , ఎత్తు h అయిన దాని ఉపరితల వైశాల్యం, అది నిలువుగా ఉన్నప్పుడు గల మూడు అంశాల మొత్తంగా చెప్పవచ్చు.ఆ మూడు అంశాలు:

  • పై భాగం వైశ్యాల్యం : πr2
  • క్రింది భాగం వైశాల్యం: πr2
  • వక్రతల వైశాల్యం: rh

స్థూపం యొక్క పై, క్రింది భాగాల వైశాల్యాలు సమానం. దీనిని భూవైశాల్యం (B) అందురు. ప్రక్క తలం యొక్క వైశాల్యాన్ని వక్రతల వైశాల్యం ( L) అందురు.

పైన, క్రింద తలాలు లేని స్థూపానికి వక్ర తలం మాత్రమే ఉంటుంది. అందువలన దాని ఉపరితల వైశాల్యం:

L = 2πrh.

ఒక ఘన సమ వృత్తాకార స్థూపం ఉపరితల వైశాల్యం దాని మూడు అంశాల మొత్తంగా చెప్పవచ్చు: పైభాగం, క్రింది భాగం, ప్రక్క తలం. దాని ఉపరితల వైశాల్యం,

A = L + 2B = 2πrh + 2πr2 = 2πr(h + r) = πd(r + h),

అందులో d = 2r అనునది స్థూపం పైభాగం లేదా క్రింది భాగం యొక్క వ్యాసం. [4]

సమ వృత్తాకార గుల్ల గోళంసవరించు

గుల్లగా ఉన్న స్థూపం

ఒక సమవృత్తాకార గుల్ల స్థూపం, వేర్వేరు వ్యాసార్థాలు ఏక కేంద్ర వృత్తాకార భూములు, ఒకే ఎత్తు గల రెండు స్థూపాల మధ్యలో గల త్రిమితీయ ప్రదేశం. అది ప్రక్క పటంలో చూడావచ్చు.

ఒక బోలు స్థూపం ఎత్తు h, అంతర వ్యాసార్థం r, బాహ్య వ్యాసార్థం R అయిన దాని ఘనపరిమాణం:

.

ఈ విధంగా బోలు స్థూపం ఘనపరిమాణం 2π(సరాసరి వ్యాసార్థం)(ఎత్తు)(మందం) కు సమానంగా ఉంటుంది[5].

దాని ఉపరితల వైశాల్యం, దాని పైన, క్రింది తలాలతో ఈ క్రింది విధంగా ఉంటుంది[6].

.

మూలాలుసవరించు

  1. κύλινδρος Archived 2013-07-30 at the Wayback Machine, Henry George Liddell, Robert Scott, A Greek-English Lexicon, on Perseus
  2. "స్థూప ఘనపరిమాణం తెలుసుకోడం ఎలా? | Prajasakti::Telugu Daily". www.prajasakti.com. Retrieved 2019-08-29.
  3. Wentworth & Smith 1913, p. 359
  4. Lax, Peter D.; Terrell, Maria Shea (2013), Calculus With Applications, Undergraduate Texts in Mathematics, Springer, p. 178, ISBN 9781461479468, archived from the original on 2018-02-06.
  5. Swokowski 1983, p. 292
  6. Swokowski 1983, p. 291
"https://te.wikipedia.org/w/index.php?title=స్థూపం&oldid=2989276" నుండి వెలికితీశారు