వైశాల్యం అనగా సమతలంలో ఒక ద్విమితీయ ఆకారం ఆక్రమించే స్థల పరిమాణం. దీన్ని అర్థం చేసుకొనుటకు ఒక నిర్ణీత మందముగల ఆకారమునకు మొదటి కోట్ గా దాని ఉపరితలమునకు సరిపడే రంగువేయుటలో ఆక్రమించు స్థల పరిమాణం.[1] ఇది ఒక వక్రతలమునకు యొక్క (ఏక మితీయ భావన) లేదా ఒక ఘన పదార్థం యొక్క ఘనపరిమాణము (త్రి మితీయ భావన) లకు వాటి పొడవులో గల ద్విమితీయ భావన.

Three shapes on a square grid
The combined area of these three shapes is approximately 15.56 squares

ఒక ఆకారము యొక్క వైశాల్యమును నిర్ణీత పరిమాణము గల చదరాలతో పోల్చి చెబుతారు[2]. అంతర్జాతీయ ప్రమాణాలు వ్యవస్థ (SI) పద్ధతిలో వైశాల్యమునకు ప్రమాణాలు "చదరపు మీటర్లు" లేదా "స్క్వేర్ మీటర్లు" (దీనిని m2గా వ్రాస్తాము). చదరపు మీటరు అనగా ఒక మీటరు భుజం గల చదరపు వైశాల్యము[3]. ఒక ఆకారం యొక్క వైశాల్యము మూడు చదరపు మీటర్లు అనగా మూడు ఒక మీటరు భుజము గల చదరాల వైశాల్యములకు సమానం. గణిత శాస్త్రములో ప్రమాణ చదరము అనగా ఏదైనా ఒక ఆకారం యొక్క వైశాల్యం, వాస్తవ సంఖ్యలతో కొలతలేని తలము లేదా ఆకారం యొక్క వైశాల్యము.

కొన్ని సాధరణ ఆకారాలైన త్రిభుజాల, దీర్ఘచతురస్రాల, వృత్తాల యొక్క వైశాల్యములకు సంబంధించిన సూత్రములు అందరికీ సుపరిచితమే. ఈ సూత్రములనుపయోగించి ఒక బహుభుజి యొక్క వైశాల్యమును వివిధ త్రిభుజాలుగా విడగొట్టి వాటి మొత్తము వైశాల్యమును గణించి కనుగొనవచ్చును[4]

వక్ర సరిహద్దు గల ఆకారాలకు వైశాల్యాలను కలన గణితం ఉపయోగించి కనుగొనవచ్చును. నిజానికి,కలన గణిత అభివృద్ధికి ప్రధాన ప్రేరణ యేమిటంటే సమతల పటాలకు వైశాల్యమును గణించుటలో సమస్యలు.[5]

ఒక ఘనాకృతిలో గల ఆకారాలైన గోళం, శంకువు, లేదా స్థూపం వంటివాటి ఉపరితల మొత్తము వైశాల్యాన్ని ఉపరితల వైశాల్యము అంటారు[1][6]. సాధారణ గోళముల యొక్క ఉపరితల వైశాల్యములను ప్రాచీన గ్రీకు గణిత శాస్త్రవేత్తలు గణించారు. కానీ యితర సంకిష్ట ఆకారముల యొక్క ఉపరితల వైశాల్యములను సాధారణంగా అనేక చరరాశులతో కూడిన కలన గణితాన్ని ఉపయోగిస్తాము.

నవీన గణిత శాస్త్రములో వైశాల్యము అనునది ముఖ్యమైన పాత్ర వహిస్తుంది. యిది జ్యామితి, కలనగణితం లతో పాటు సరళ బీజగణితంలో నిర్ధారకముల నిర్వచముల కొరకు, అవకలన జ్యామితిలో ఉపరితలాల ప్రాథమిక ధర్మాలను తెలుసుకొనుటకు ఉపయోగపడుతుంది[7]. విశ్లేషణలో ఒక తలం యొక్క ఉపసమితి యొక్క వైశాల్యమును లెబెగూ కొలతతో నిర్వచించవచ్చు[8][9] సాధారణంగా వైశాల్యము ఉన్నత గణిత శాస్త్రములో ద్విమితీయ ప్రాంతములలో ఘనపరిమాణము యొక్క ప్రత్యేక సందర్భముగా చెప్పబడుతుంది[1].

నిర్వచనము

మార్చు

ప్రమాణాల ద్వారా నిర్వచించే విధానాన్ని "వైశాల్యం" అనవచ్చును. "వైశాల్యం" అనగా కొన్ని ప్రత్యేక రకముల సమతల పటాల సమూహం "M"లో ఈ క్రింది ధర్మాలను సంతృప్తి పరిచే వాస్తవ సంఖ్యల సమితి యొక్క ప్రమేయం.

  • Mలో గల అన్ని S లకు a (S) ≥ 0.అవుతుంది. (అనగా అన్ని సమతల పటాల సమూహం "M"లో గల ఏదేని ఉపసమితి S తీసుకొంటే దాని వైశాల్యం ఎప్పుడూ ధనాత్మకంగా ఉంటుంది.)
  • S , Tలు M లోని వైతే అపుడు ST , ST, a (ST) = a (S) + a (T) − a (ST) అవుతుంది.
  • S , T అనునవి Mలో ఉంటే ST అయితే అపుడు TS కూడా Mలో ఉంటుంది. , a (TS) = a (T) − a (S) అవుతుంది.
  • S అనే సమితి Mకు ఉపసమితి అయితే , S , Tలు సర్వసమానమైతె అపుడు T కూడా Mలో ఉంటుంది , a (S) = a (T) అవుతుంది.
  • ప్రతి దీర్ఘచతురస్రాల సమితి R కూడా Mలో ఉంటుంది. దీర్ఘచతురస్ర పొడవు h , వెడల్పు k అయితే అపుడు a (R) = hk. అవుతుంది.
  • రెండు దశల ప్రాంతాలు S , T ల మధ్య Q అనే సమితి ఉంటే, ఒకే భూమిపై గల వివిధ ఆసన్న దీర్ఘచతురస్రాల పరిమిత సమితి అడుగు ప్రాంతంలో యేర్పడుతుంది i.e. SQT అవుతుంది. అపుదు a (S) ≤ c ≤ a (T) అయ్యేటట్లు c అనే ఏకైక సంఖ్య వ్యవస్థితమవుతుంది.
  • లెట్ Q రెండు దశల ప్రాంతాల మధ్య నడుమ సమూహం S , T. ఒక అడుగు ప్రాంతంలో, ఒక సాధారణ బేస్ విశ్రాంతి ప్రక్కనే దీర్ఘ చతురస్రాలు ఒక పరిమిత యూనియన్ నుండి ఏర్పడుతుంది. S , T ల యొక్క అన్ని త్రాంతాలకు a (Q) = c అవుతుంది.

వైశాల్య ప్రమేయం వ్యవస్థితమైనట్లు నిరూపించబడింది.[10]

ప్రమాణాలు

మార్చు
 
A square metre quadrat made of PVC pipe.

ప్రతి పొడవు యొక్క ప్రమాణం సంబంధిత వైశాల్య ప్రమాణాన్ని కలిగి యుంటుంది. అనగా ఒక చతురస్ర వైశాల్యము దాని భుజం పై ఆధారపడి ఉంటుంది. అందువల్ల వైశాల్యము "చదరపు మీటర్లు" (m2),చదరపు సెం.మీ (cm2), చదరపు మిల్లీ మీటర్లు (mm2), చదరపు కిలో మీటర్లు (km2), చదరపు అడుగులు (ft2), చదరపు గజములు (yd2), చదరపు మైళ్లు (mi2), వంటి ప్రమాణాలలో కొలవబడుతుంది[11] బీజగణిత పరంగా ఈ ప్రమాణాలు వాటి పొడవు ప్రమాణాలకు సంబంధించిన చదరాలుగా చెప్పబడుతుంది.

SI పద్ధతిలో వైశాల్యమునకు ప్రమాణం స్క్వేర్ మీటరు. ఇది ఎస్.ఐ ఉత్పన్న ప్రమాణం[3].

ప్రమాణాల మార్పులు

మార్చు
 
Although there are 10 mm in 1 cm, there are 100 mm2 in 1 cm2.

వైశాల్యమునకు వివిధ ప్రమాణాల మార్పిడి వాటి చదరపు ప్రమాణాల యొక్క చదరాల పొడవుల మార్పిడి బట్టి గణిస్తారు. ఉదాహరణకు,

1 అడుగు = 12 అంగుళాలు,

చదరపు అడుగు, చదరపు అంగుళము ల మధ్య సంబంధము

1 చదరపు అడుగు = 144 దచరపు అంగుళాలు,

144 = 122 = 12 × 12. అవుతుంది కనుక, అదే విధంగా:

  • 1 చదరపు కిలో మీటరు = 1,000,000 చదరపు మీటర్లు
  • 1 చదరపు మీటరు= 10,000 చదరపు సెంటీ మీటర్లు = 1,000,000 చదరపు మిల్లీ మీటర్లు
  • 1 చదరపు సెంటీ మీటర్లు = 100 చదరపు మిల్లీ మీటర్లు
  • 1 చదరపు గజము = 9 చదరపు అడుగులు
  • 1 చదరపు మైలు = 3,097,600 చదరపు గజములు = 27,878,400 చదరపు అడుగులు

మరికొన్ని,

  • 1 చదరపు అంగుళాలు = 6.4516 చదరపు సెంటీ మీటర్లు
  • 1 చదరపు అడుగు = 0.09290304 చదరపు మీటర్లు
  • 1 చదరపు గజము = 0.83612736 చదరపు మీటరు
  • 1 చదరపు మైలు= 2.589988110336 చదరపు కిలో మీటర్లు.

యితర ప్రమాణములు

మార్చు

వైశాల్యములకు అనేక సాధారణ ప్రమాణాలు ఉన్నాయి. "ఏర్" అనునది మెట్రిక్ వ్యవస్థలో వైశాల్యమునకు ప్రమాణం;

  • 1 ఏర్ = 100 చదరపు మీటర్లు

భూమి కొలతలు కొలిచేటప్పుడు సాధారణంగా హెక్టారు అనే ప్రమాణమును ఉపయోగిస్తారు[11]

  • 1 హెక్టారు = 100 ఏర్లు = 10,000 చదరపు మీటర్లు = 0.01 చదరపు కిలో మీటర్లు;

మెట్రిక్ వ్యవస్థలో వాడే యితర వైశాల్య ప్రమానాలు టెట్రాడ్, హెక్టాడ్, and the మిరియడ్.

ఎకరా అనునది సాధారణంగా భూమి వైశాల్యము కొలిచే ప్రమాణం

  • 1 ఎకరా = 4,840 చదరపు గజములు= 43,560 చదరపు అడుగులు.

ఒక ఎకరా సుమారు హెక్టారులో 40% ఉంటుంది.

పరమాణు స్కేల్ లో వైశాల్య ప్రమాణాలు బార్న్ లలో కొలుస్తారు. అందువలన[11]

  • 1 బార్న్= 10−28 చదరపు మీటర్లు.

బార్న్ అనునది సధారణంగా కేంద్రక భౌతిక శాస్త్రంలో మధ్యచ్చేద వైశాల్యాలకు వాడుతారు[11]

భారతదేశంలో;

  • 20 ఢుక్రి = 1 ఢుర్
  • 20 ఢుర్ = 1 ఖత
  • 20 ఖత = 1 బిఘ
  • 32 ఖత = 1 ఎకరా

వైశాల్యానికి సూత్రములు

మార్చు

బహుభుజి సూత్రములు

మార్చు

దీర్ఘచతురస్రము

మార్చు
 
The area of this rectangle is lw.

దీర్ఘ చతురస్రం యొక్క వైశాల్యము కనుగొనుటకు సూత్రము మూలాధారమైనది. యిచ్చిన దీర్ఘచతురస్రం యొక్క పొడవు l, వెడల్పు w ఐతే వైశాల్యం::[2] A = lw (దీర్ఘ చతురస్రం) అనగా దీర్ఘ చతురస్ర వైశాల్యం అనగా దాని పొడవు, వెడల్పుల లబ్ధము. కొన్ని ప్రత్యేక సందర్భాలలో చతురస్రాలకు పొడవు వెడల్పులు సమానమైతే {math|l = w}}, దాని భుజము s అని యిస్తే దాని వైశాల్యమునకు సూత్రము:[1][2]

A = s2 (చతురస్రము)

అందువలన దీర్ఘ చతురస్ర వైశాల్యమునకు సూత్రము అనునది వైశాల్యమునకు మూల ధర్మముగా ఉంది. కొన్నిసార్లు నిర్వచనలులకు, ప్రమాణములకు ఉపయోగపడుతుంది. అంకగణితం కంటే జ్యామితి ముందుగా అభివృద్ధి చెందినది. ఈ సూత్రము వాస్తవ సంఖ్యల గుణాకారం ఆధారంగా చేయబదుతుంది.

 
Equal area figures.

డిసెక్షన్ సూత్రాలు

మార్చు

మరి కొన్ని జ్యామితీయ ఆకృతుల వైశాల్యము కనుగొనుటకు ఆ పటాన్ని వివిధ చిన్న జ్యామితీయ ఆకృతులుగా విడదేసే పద్ధతి (డిసెక్షన్ పద్ధతి) ని వాడుతారు. ఈ విధానంలో యిచ్చిన ఆకృతిని చిన్న చిన్న ఆకృతులుగా విడగొట్టి వాటి విడి విడి వైశాల్యములు కనుగొని వాటి మొత్తమును కనుగొని అసలు ఆకృతి వైశాల్యమును గణిస్తారు.

ఉదాహరణకు ఏదైనా సమాంతర చతుర్భుజంను ఒక ట్రెపీజియం, లంబకోణ త్రిభుజంగా విడగొట్టి (పటంలో చూపబడినట్లు) అందులో గల త్రిభుజాన్ని ఆ ట్రెపీజియం యొక్క వేరొక వైపుకు తరలిస్తే అది దీర్ఘ చతురస్రమవుతుంది. అందువలన సమాంతర చతుర్భుజం యొక్క వైశాల్యము అంతే వెడల్పు గల దీర్ఘ చతురస్ర వైశాల్యానికి సమానంగా ఉంటుంది.ref name=AF/>

A = bh  (సమాంతర చతుర్భుజం).
 
Two equal triangles.

However, the same parallelogram can also be cut along a diagonal into two congruent triangles, as shown in the figure to the right. It follows that the area of each triangle is half the area of the parallelogram:[2]

   (త్రిభుజం).

అదే విధంగా ట్రెపీజియం, రాంబస్ వైశాల్యములను గణించవచ్చు. అదేవిధంగా అనేక బహుభుజుల వైశాల్యాలను గణించవచ్చు.

వక్ర ఆకారాల విస్తీర్ణములు

మార్చు

 
A circle can be divided into sectors which rearrange to form an approximate parallelogram.

వృత్తము యొక్క వైశాల్యమును గణించుటకు కూడా యిదే పద్ధతిని ఉపయోగిస్తాము. ఒక r వ్యాసార్థం గల వృత్తాన్ని తీసుకొని దానిని అనేక సెక్టర్లుగా విడగొట్టాలి. పటంలో ఎనిమిది సెక్టర్లుగా విడగొట్టబడింది. ప్రతి సెక్టరు ఒక త్రిభుజాకారంలో యుంటుంది. ఈ సెక్టర్లను కత్తిరించి వాటిని ఒక సమాంతర చతుర్భుజంగా పేర్చితే దాని ఎత్తు వృత్త వ్యాసార్థం rకి సమానంగా యుంటుంది., వృత్త చుట్టుకొలత యొక్క సగభాగం అనగా πr సమాంతా చతుర్భుజం యొక్క భూమి అవుతుంది. అందువలన వృత్త వైశాల్యము, దాని సెక్టర్లతో యేర్పడిన సమాంతర చతుర్భుజం వైశాల్యమునకు సమానం అనగా r × πr లేదాπr2:[2]

A = πr2  (వృత్తము).

ఈ డిసెక్షన్ విధానము ఉపయోగించడం వలన వైశాల్య విలువ సుమారు విలువ వచ్చింది. దీనిలో దోషం చాలా తక్కువ ఉంది. సెక్టర్లను అతి చిన్నవి కత్తిరించితే దోషశాతం తగ్గుతుంది. సుమారు సమాంతర చతుర్భుజంగా ఉన్న వైశాల్యం యొక్క అవధి πr2 అవుతుంది. అది వృత్త వైశాల్యమునకు సమానంగా ఉంటుంది.[12]

ఈ వాదన కలనగణితంలో సాధారన అనువర్తనముగా యుంటుంది. ప్రాచీన కాలంలో వృత్త వైశాల్యమును కనుగొనుటకు ఈ కష్టమైన పద్ధతి ఉపయోగించేవారు. ఈ పద్ధతి ప్రస్తుతం "సమాకలన కలనగణితం"లో గుర్తింపు పొందినది. ఈనవీన పద్ధతి ఉపయోగించి సమాకలన పద్ధతుల ద్వారా వృత్త వైశాల్యమును ఈ క్రింది విధంగా గణించవచ్చు.

 

దీర్ఘవృత్తము

మార్చు

దీర్ఘ వృత్తము యొక్క వైశాల్యమునకు సూత్రము వృత్త వైశాల్య సూత్రమును పోలి యుంటుంది; ఒక దీర్ఘ వృత్తాన్ని దీర్ఘాక్షం, హ్రస్వాక్షం యుంటాయి.వాటిని x , y లతో సూచిస్తే దాని వైశాల్యమునకు సూత్రము::[2]

 

ఉపరితల వైశాల్యము

మార్చు
 
Archimedes showed that the surface area and volume of a sphere is exactly 2/3 of the area and volume of the surrounding cylindrical surface.

కొన్ని త్రిమితీయ ఆకృతుల ఉపరితల వైశాల్యములను వాటి ఉపరితలాలను కత్తిరించి వాటిని సమతలంగా చేసి కనుగొనవచ్చును. ఉదాహరణకు ఒక స్థూపం యొక్క ప్రక్కతల వైశాల్యము లేదా ఒక పట్టకం యొక్క ప్రక్కతల వైశాల్యము కనుగొనునపుడు వాతి ఉపరితలాలు ఒక దీర్ఘ చతురస్ర ఆకారంలోకి వస్తాయి. అదేవిధంగా ఒక శంకువు యొక్క ప్రక్కతలం కత్తిరించిన అది సమతలంగా ఉంచితే అది సెక్టరును పోలి యుంటుంది దీని వల్ల వైశాల్యములను గణించవచ్చు.

ఒక గోళం యొక్క ఉపరితల వైశాల్యము గణించుట కష్టసాధ్యమైనది. ఎందువలనంటే దాని ఉపరితలం శూన్యం కాని గాసియన్ వక్రము. ఇది సమతలంగా చేయుట అసాధ్యము. దీని ఉపరితల వైశాల్యమునకు సూత్రమును మొట్టమొదట కనుగొనిన వాడు ఆర్కిమెడిస్. ఆయన గ్రంథం On the Sphere and Cylinderలో దీని వైశాల్య సూత్రాన్ని వివరించడం జరిగింది. ఉపరితల వైశాల్యమునకు సూత్రము:[6]

A = 4πr2  (గోళము).

r అనునది గోళం యొక్క వ్యాసార్థం. ఈ సూత్రం ఫలితంగా ఏదైనా సూత్రమును కలనగణిత సూత్రాలనుపయోగించి గణించవచ్చు.

సాధారణ సూత్రాలు

మార్చు

ద్విమితీయ పటాల వైశాల్యములు

మార్చు
  • త్రిభుజం :   (B అనగా ఏదైనా భుజం, h ఆ భుజమునుండి ఎదుటి శీర్షమునకు గీచిన లంబం పొడవు), ఈ సూత్రములో hను "ఎత్తు" అని కూడా అంటారు. త్రిభుజం యొక్క భుజముల పొడవులు తెలిస్తే దాని వైశాల్యమును   సూత్రంతో గణించవచ్చు. దీనిలో a, b, cలు త్రిభుజ భుజాలు,   (చుట్టుకొలతలో సగం)[2]. ఒకవేళ త్రిభుజంలో ఒక కోణము, ఆ కోణమునకు ఆసన్న భుజాలు ఇచ్చినపుడు వైశాల్యమును   సూత్రంతో గణించవచ్చు. ఇందులో C అనునది కోణము, a, bలు ఆ కోణము యేర్పరచిన భుజముల పొడవులు[2] .ఒక వేళ త్రిభుజం నిరూపక తలంలో మూడు బిందువులతో కూడుకున్నదైతే దాని వైశాల్యమును   సూత్రంతో గణించవచ్చు. ఈ సూత్రమును షోలాక్ సూత్రం అంటారు. దీని ద్వారా మూడు శీర్షాల నిరూపకాలు అయిన (x1,y1), (x2,y2), (x3,y3) ల విలువలను ప్రతిక్షేపించి త్రిభుజ వైశాల్యమును గణించవచ్చు. ఈ షోలాక్ సూత్రమును వివిధ బహుభుజుల వైసాల్యముల వైశాల్యములు కనుగొనుటకు ఉపయోగిస్తారు. నిరూపక జ్యామితిలో త్రిభుజ వైశాల్యమును గణించుటకు వేరొక పద్ధతి కలనగణిత పద్ధతి.

కలనగణిత వైశాల్యములు

మార్చు
 
Integration can be thought of as measuring the area under a curve, defined by f (x), between two points (here a and b).
 
The area between two graphs can be evaluated by calculating the difference between the integrals of the two functions
  • ఒక ధనాత్మక విలువల వక్రము, అడ్డు అక్షమునకు a, b బిందువుల మధ్య గల వైశాల్యమును ఆ వక్ర ప్రమేయమునకు సమాకలనాన్ని a నుండి b బిందువుల మధ్య గణించాలి[1].
 
  • రెండు ప్రమేయాల యొక్క గ్రాఫ్‌ల మధ్య గల వైశాల్యము ఒక ప్రమేయము f (x) యొక్క సమాకలనానికి, రెండవ ప్రమేయం g (x) యొక్క సమాకలనానికి ఋణ గుర్తుకు సమానంగా ఉంటుంది.
  ,   అనునది ఎక్కువ y-విలువ గల వక్రము.
  • ఒక పోలార్ నిరూపకాలతో కూడిన ప్రమేయం r = r (θ) ఐతే [1]
 
  • ఒక   అంత్య బిందువులుగా గల   అనే పారామెట్రిక్ వక్రము వైశాల్యమును
  తో గణించవచ్చు.

( గ్రీన్ సిద్ధాంతము చూడండి.) లేదా z అనునది

  యొక్క కాంపొనెంట్.

త్రిమితీయ పటాల ఉపరితల వైశాల్యము

మార్చు
  • శంకువు:[13]  , r అనగా వృత్తాకార భూమి వ్యాసార్థము,, h అనగా శంకువు ఎత్తు.దీనిని   అని కూడా వ్రాయవచ్చు.[13] లేదా   r అనగా వ్యాసార్థము, l అనగా వాలు తలం యొక్క పొడవు.  అనేది భూ వైశాల్యము. దాని ప్రక్కతల వైశాల్యము   అవుతుంది.[13]
  • సమఘనం:  , s అనగా ఒక భుజం పొడవు.[6]
  • స్తూపము:  , r అనగా భూవ్యాసార్థము, h అనగా ఎత్తు. 2 rను   dగా కూడా వ్రాయవచ్చు.దీనిలో d వృత్త వ్యాసము అవుతుంది.
  • పట్టకము: 2B + Ph, B అనగా భూ వైశాల్యము, P అనగా భూమి యొక్క చుట్టుకొలత, h అనగా పట్టకము యొక్క ఎత్తు.
  • పిరమిడ్:  , B అనగా భూవైశాల్యము. P అనగా భూ చుట్టుకొలత, L అనేది స్లాంట్ పొడవు.
  • దీర్ఘచతురస్రాకార పట్టకము:  ,  అనగా పొడవు, w అనగా వెడల్పు, h అనగా ఎత్తు.

సాధారణ సూత్రములు

మార్చు

ఒక గ్రాఫ్ యొక్క అవిచ్ఛిన్న అవకలజ ప్రమేయం యొక్క ఉపరితల వైశాల్యమునకు సాదారణ సూత్రము   where   and   is a region in the xy-plane with the smooth boundary:

 

Even more general formula for the area of the graph of a parametric surface in the vector form   where   is a continuously differentiable vector function of  :[7]

 

సూత్రాల జాబితా

మార్చు

వివిధ క్రమ, క్రమరహిత బహుభుజుల వైశాల్యముల సూత్రములను ఈ దిగువ పట్టికలో చూడవచ్చు.

మరికొన్ని వైశాల్యములకు సాధారణ సూత్రములు:
ఆకారము సూత్రము చరరాశులు
క్రమత్రిభుజం (సమబాహు త్రిభుజం)     అనునది త్రిభుజం యొక్క ఒక భుజం.
త్రిభుజం[1]     అనగా చుట్టుకొలతలో సగం.  ,  ,  లు త్రిభుజ భుజాలు.
త్రిభుజం[2]    ,  లు రెండు భుజాలు,   అనగా ఆ భుజాల మధ్య కోణము.
త్రిభుజం[1]    ,  లు భూమి, ఎత్తు.
రాంబస్    ,  లు రాంబస్ యొక్క రెండు కర్ణముల పొడవులు.
సమాంతర చతుర్భుజం     అనగా భూమి పొడవు.,   అనగా ఎత్తు.
ట్రెపీజియం     and  లు సమాంతర భుజముల పొడవులు,   రెండు సమాంతర భుజాల మధ్య దూరం.
క్రమ షడ్భుజి     అనగా దాని ఒక భుజము.
క్రమఅష్టభుజి     అనగా దాని ఒక భుజము.
క్రమ బహుభుజి     అనగా భుజం పొడవు,   అనగా భుజముల సంఖ్య.
క్రమ బహుభుజి     అనగా చుట్టుకొలత,   అనగా భుజముల సంఖ్య
క్రమ బహుభుజి     అనగా పరివృత్త వ్యాసార్థం,   అనగా అంతర వృత్త వ్యాసార్థం,   అనగా భుజముల సంఖ్య.
క్రమ బహుభుజి     అనగా అపోథెం, లేదా అంతర వృత్త వ్యాసార్థం,   బహుభుజి యొక్క చుట్టుకొలత.
వృత్తము     అనగా వ్యాసార్థము,   వ్యాసము
సెక్టరు    ,   దాని వ్యాసార్థం, కోణం (రేడియన్లలో),,   వుట్టుకొలత
దీర్ఘవృత్తం[2]    ,  లు దీర్ఘాక్షం, హ్రస్వాక్షం పొడవులు.
స్తూపం యొక్క ప్రక్కతల వైశాల్యము    ,  లు వ్యాసార్థం, ఎత్తులు .
స్తూపం ప్రక్కతల వైశాల్యం    ,  లు వ్యాసార్థం, ఎత్తులు .
గోళము యొక్క ఉపరితల వైశాల్యము.[6]    ,  లు వ్యాసార్థము, వ్యాసములు
పిరమిడ్ యొక్క సంపూర్ణతల వైశాల్యము.[6]     అనగా భూ వైశాల్యము,  అనగా చుట్టుకొలత,   అనగా వాలు ఎత్తు.
Square to circular area conversion     is the area of the square in square units.
Circular to square area conversion     is the area of the circle in circular units.

పై గణనలు సాధారణ ఆకృతులకు వైశాల్యమును కనుగొను సూత్రములు.

అక్రమాకార బహుభుజులకు సర్వేయర్ సూత్రాలతో వైశాల్యమును గణించవచ్చు[12]

యివి కూడా చూడండి

మార్చు

సూచికలు

మార్చు
  1. 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Eric W. Weisstein. "Area". Wolfram MathWorld. Retrieved 3 July 2012.
  2. 2.00 2.01 2.02 2.03 2.04 2.05 2.06 2.07 2.08 2.09 "Area Formulas". Math.com. Retrieved 2 July 2012.
  3. 3.0 3.1 Bureau International des Poids et Mesures Resolution 12 of the 11th meeting of the CGPM (1960), retrieved 15 July 2012
  4. Mark de Berg; Marc van Kreveld; Mark Overmars; Otfried Schwarzkopf (2000). "Chapter 3: Polygon Triangulation". Computational Geometry (2nd revised ed.). Springer-Verlag. pp. 45–61. ISBN 3-540-65620-0{{cite book}}: CS1 maint: postscript (link)
  5. Boyer, Carl B. (1959). A History of the Calculus and Its Conceptual Development. Dover. ISBN 0-486-60509-4.
  6. 6.0 6.1 6.2 6.3 6.4 Eric W. Weisstein. "Surface Area". Wolfram MathWorld. Retrieved 3 July 2012.
  7. 7.0 7.1 do Carmo, Manfredo. Differential Geometry of Curves and Surfaces. Prentice-Hall, 1976. Page 98, ISBN 978-0-13-212589-5
  8. Walter Rudin, Real and Complex Analysis, McGraw-Hill, 1966, ISBN 0-07-100276-6.
  9. Gerald Folland, Real Analysis: modern techniques and their applications, John Wiley & Sons, Inc., 1999,Page 20,ISBN 0-471-31716-0
  10. Moise, Edwin (1963). Elementary Geometry from an Advanced Standpoint. Addison-Wesley Pub. Co. Retrieved 15 July 2012.
  11. 11.0 11.1 11.2 11.3 Bureau international des poids et mesures (2006). "The International System of Units (SI)" (PDF). 8th ed. Retrieved 2008-02-13. {{cite journal}}: Cite journal requires |journal= (help) Chapter 5.
  12. 12.0 12.1 Braden, Bart (September 1986). "The Surveyor's Area Formula" (PDF). The College Mathematics Journal. 17 (4): 326–337. doi:10.2307/2686282. Archived (PDF) from the original on 5 నవంబరు 2003. Retrieved 15 July 2012.
  13. 13.0 13.1 13.2 Eric W. Weisstein. "Cone". Wolfram MathWorld. Retrieved 6 July 2012.

యితర లింకులు

మార్చు